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Preface

The purpose of this thesis is to demonstrate the
feasibility of the moving-bank multiple model adaptive
estimation algorithms as applied to flexible sp;cestructure
control. Moving-bank multiple model adaptivé estimation/
control is an attempt to reduce the computational loading
associated with the implementation of a full-scale multiple
model adaptiVe estimator/controller. The results of this
thesis indicate that although the use of a moving bank may
provide increased state estimation performance, similar
performance can be obtained from a fixed bank estimator
with a discretization that covers the range of parameter
variation.

I wish to express deep thanks to my thesis advisor,
Professor Peter S. Maybeck, for the personal and profes-
sional commitment he has shown to me. I also wish to thank
Dr. V. B. Venkayya and V. A. Tischler for their assistance
during the development of the mathematical model of the
flexible space structure. Finally, I wish to thank my wife
- for her support and understanding and for being
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— Drew A. Karnick
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{ Abstract

This investigation focuses on the use of moving-

bank multiple model adaptive estimation and control (MMAE).

W AT

Moving-bank MMAE reduces the computational burden of MMAE

by implementing only a subset of the Kalman filters

|
%
(9 filters versus 100 in this research) that are necessary
to mathematically describe the system to be estimated/ |
controlled. Important to the development of the moving-

bank MMAE are the decision logics governing the selection ;
|

s A A e SRR A e & A A

of the subset of filters. The decision logics cover three
Qi? situations: initial acquisition of unknown parameter

values; tracking unknown parameter values; and reacquisi-

tion of the unknown parameters following a "jump" change

in these parameter values.

The thesis applies moving-bank MMAE to a rotating
two bay truss model of a flexible spacestructure. The
rotating two bay truss approximates a space structure that
has a hub with appendages extending from the structure.
The mass of the hub is large relative to the mass of the
appendage. The hub is then rotated to point the appendage
in a commanded direction. The mathematical model is
developed using finite element analysis, transformed into

ia? modal formulation, and reduced using a method referred to
‘k y

ix
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@g& as singular perturbations. Multiple models are developed
by assuming that variation occurs in the mass and stiff-
ness of the structure. Ambiguity function analysis and
Monte Carlo analysis of individual filters are used to
determine if the assumed parameter variation warrants the
application of adaptive control/estimation techniques.

Results indicate that the assumed parameter vari-
ation is sufficient to require adaptive control and that
the use of a moving bank may provide increased state esti-

mation performance; however, the increase in performance

AR v v T d o RIS A A R ey w X N i

is due primarily to multiple model adaptive estimation.
Similar performance can be cbtained from a fixed bank
estimator with a discretization that covers the range of

R
GE: parameter variation.
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MOVING-BANK MULTIPLE MODEL ADAPTIVE ESTIMATION

APPLIED TO FLEXIBLE SPACESTRUCTURE CONTROL

I. Introduction

/A significant problem in estimation and control is
the uncertainty of parameteré in the mathematical model
used in the design of controllers and/or estimators. These
parameters may be unknown, varying slowly, or changing
abruptly due to a failure in the physical system. These
changes in parameters often necessitate the identification
of parameters within the mathematical model and changing
the mathematical model during a real-time control problem.
This is often referred to as adaptive control and/or esti-
mation. This thesis investigates methods of adaptive con-
trol implementing a moving-bank multiple model adaptive

/ . P T 7
estimator. {\5/‘;4';-' do o hggvihnes e A

; g S J ——— ' /‘”ﬂ'f‘ N (b(:‘ - i
Lf//'\n)'f)' ""‘v‘g?vfl 5_/“): : &/ ™ - “/’7‘{, o Y A aal dr =
i ”) J—— I L
I.1. “Background - ()t‘., G e - T
¢ s U Ry - ]} R # "
Multiple Model Adaptive Estimation (MMAE) involves

forming a bank of Kalman filters (3; u; 7; 12; 13; 17; 18;

20:129-135). The Kalman filter is a recursive data pro-

|
2

cessing algorithm (19:4) and is the optimal estimator for a

_known linear system with dynamics and measurement noises

T e

modeled as white and Gaussian. Each Kalman filter is

PO, 7 T
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? %ﬁ% associated with a possible value of an uncerta 1 parameter
i vector. It is assumed that the uncertain para :ters can
y

take on only discrete values; either this is r. isonable

physically or discrete values are chosen from 1e continu-
ous parameter variation range. The output of : ich filter
is then weighted by the a posteriori probabili ; of that

% filter being correct, conditioned on the obser :d time
history of measurements. These weighted outpu ; are summed
to form an estimate of the system states. The :quations

for the MMAE algorithms, as well as convergenc: properties,

are fully developed in Chapter II.

MMAE has been successfully implemented .n several

estimation and control problems. The applicat >»n of MMAE

w3 ~Ter® e " T s
o L e

fg? to the tracking of airborne targets has been r« searched
(9; 15; 27). The control- method has also been 1sed in con-
trolling fuel tank fires (33), addressing terr: .n correla-
tion (28), and generating estimators for problc is in which
large initial uncertainties cause non-adaptive :xtended

Kalman filters to diverge (26).

An inherent problem of MMAE is the numl :r of filters

.

required. For example, if there are two uncer :iin param-
eters and each can assume one of 10 possible d ;crete
values, then 102 = 100 separate filters are rec i1ired.
Problems requiring larger numbers of uncertain rarameters

and/or finer parameter discretization quickly ! :come

. impractical for implementation (3; 6).

ok 2o e X o R
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Several approaches have been used to alleviate the
computational burden of MMAE (3:5). One method uses Markov
processes to model the parameter variation (1; 23). A
process is considered Markov if its present parameter value
depends only on the previous parameter value (1:418). Other
methods include: using "pruning" and/or "merging" of "deci-
sion tress" of the possible parameter time history (22;
23) , hierarchically structuring the algorithms to reduce
the number of filters (4), and a method in which the filter
is initialized with a coarse parameter space discretization,
but after the filter converges to the "nearest" parameter,
the filter is rediscretized using a simplex directed method
(14) .

A method proposed by Maybeck and Hentz (6; 18) is
to implement a small number of estimators in a "moving-
bank." For instance, one might take the current best esti-
mate of the uncertain parameters, and implement only those
estimators (and controllers) that most "closely" surround
the estimated value in parameter space. For the case of
two uncertain parameters requiring 100 separate filters,
the three discrete values of each parameter that most
closely surround the estimated value can be selected, only
requiring only 32 = 9 geparate filters instead of 100; see
Figure I-1. As the parameter estimate changes, the choice

of filters could change, resulting in a "move" of the bank

3



X, * * * * * * * * * *
R
* * * * * * * * * *
P * * * * * * * * * *
A
R * * * * * * * * * %*
A
M * * * * * * * * * *
E
T * * * * a (o] (@] % * *
E
R X
* * * * (] (m] (] * * *
Al * * * * (] 0 a * * *
* * * * * * * * * *
* * * * * * * * * *
PARAMETER A2

0 used Kalman filter
* unused Kalman filter
’ X current best estimate of the
@ true parameter value

Fig. I-1l. Moving=-bank Multiple Model Adaptive Estimator

of 9 filters. Equations for the moving-bank MMAE are
developed in Chapter II.

Hentz (6) applied the moving-bank MMAE to a simple
but physically motivated two-state system model and was
able to demonstrate performance equivalent to the full-bank

MMAE algorithm (and also equivalent to a benchmark of an

estimator or controller artificially given knowledge of the
true parameters), with an order of magnitude less computa-

tional loading.
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Filios (3) applied the same type of algorithms to a
reduced order model of a large flexible spacecraft. The par-
ticular problem was such that adaptivity was not required
for the range of parameter variations that made physical
sense for this application; robust control laws without
adaptivity could in fact meet performance specifications.
Research had been previously accomplished on the same model
which indicated that adaptivity might be needed if very high

angular rates were achieved during a maneuver (29).

ey Problem

The use of a full scale (full-bank) Multiple Model
Adaptive Estimator (MMAE) presents a computational burden
that is too large for most applications (3; 6; 18). The
moving-bank MMAE was evaluated for a physically motivated
but simple system and shown to be feasible (6; 18); however,
the moving-bank MMAE has yet to be successfully applied to
a more complex space structure application, requiring adap-
tive estimation/control. This research is directed towards
applying the moving~bank MMAE to a system requiring adaptiv-
ity and to assess its potential as an estimator and/or con-

troller.

I.3. Scope

The moving-bank multiple model adaptive algorithms
are applied to a physical model representative of problems
associated with large space structures. The model is a two-

bay truss attached to a hub; see Figure I-2. The two-bay

5
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truss is 100 inches long and 18 inches high. Only two
degrees of freedom (x-y plane) are allowed and translational
motion is not permitted. Non-structural masses are added
to the structure and have two purposes. First, they can be
associated with fuel tanks or some mass on a structure that
can be expected to vary in time. Secondly, the non-
structural masses are large relative to the structural mass
in order to attain the low frequency structural model asso-
ciated with large space structures (16). The model is
described in terms of mass and stiffness matrices obtained
from a finite-element analysis. The model is fully devel-
oped in Chapter III.

Two uncertain parameters are investigated: the non-
structural mass and the stiffness matrix. The uncertain
parameters are discretized into 10 pqints yielding a 10 by
10 (100 point) parameter space. It is assumed that the non-
structural masses vary -50 percent to +40 percent from the
nominal value in discrete steps of 10 percent. The entire
stiffness matrix is allowed to vary 20 percent to -16 per-
cent from the nominal value in discrete steps of 4 percent.
The dynamics and measurement noise characteristics are

assumed known and modeled as white Gaussian processes.

I.4. Approach

The research is divided into three phases: sensi-

tivity analysis, a parameter and state estimation study,

Y TR SIS S S - AR 2w
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and a controller study. The sensitivity analysis of non-
adaptive algorithms is conducted using ambiguity functions
(20:97-99); it will provide information about the perform-
ance to be expected from an estimator (20:97) and is used
to assess the need for adaptivity and also to provide
insight into the discretization of the parameter space.
The estimator and controller studies will evaluate the
potential of the moving-bank multiple model adaptive
aigorithm to provide good state estimation and system con-

trol performance.

I.4.1. Ambiquity Functions Analysis. A sensitivity

analysis is conducted using ambiguity functions (3:33-34;
6:332-333; 20:97-99). The sensitivity analysis is done on

non-adaptive estimators based on a representative sample of

parameter sets to determine what parameters can and should
be estimated. Relatively low sensitivity to a parameter

change makes identification of parameter values difficult

E

and removes the need for parameter estimation, since all
filters within the parameter variation range will do a good
job of state estimation (3:70).

The ambiguity analysis also lends valuable insight
into the discretization of the parameter space (3:91). High-
sensitivity ambiguity functions illustrate the need for a
tightly discretized parameter range. Less sensitive ambigu-

ity functions show that fewer parameter points are needed

v
Pl

to span a given parameter variation range.

8
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;ggy I.4.2. Parameter and State Estimation Study. The
parameter and state estimation study investigate the per-
formance of various decision logics for moving or changing
the size of the bank, with respect to initial acquisition
of the true parameter values, and also identification of
when a change in this true parameter value has occurred.
The primary performance criteria is the accuracy of the
state estimates and secondarily the accuracy of the param-
eter estimates. The decision logics that are studied
include Residual Monitoring, Parameter Position Estimate

Monitoring, Parameter Position and Velocity Estimate

Monitoring, and Probability Monitoring (3; 6; 18). These

o W
2u

2

i:'."

are developed in Chapter II.

3 - Two benchmark estimators will provide standards for
state estimate evaluation: a single estimator with artifi-
cial knowledge of the true parameter set and a robust,
single fixed-gain estimator. The former will indicate the

best state estimation performance that could hope to be

LRSS ST o

achieved using adaptive control while the latter estimator
will provide information on the performance that can be
attained with a non-adaptive estimator.

The parameter and state estimation study is accom-

plished through Monte Carlo Analysis. A Monte Carlo Analy-

-,
&’

-
=

sis involves obtaining a statistically valid number of
samples of an error process through simulation and then

g@& using this data to compute sample statistics as an

S O e e A
0
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: aﬁﬁ. approximation to the true process statistics (19:329).

[N
i The process statistics provide information on the perform-
g ance of the estimator or controller being investigated.

The simulation is conducted for the following cases:
a. The true parameter set is constant and equal
to one of the discretized parameter sets. There are two

possible initial conditions:

x

1. The true parameter set is within the ini-

W

tial discretization chosen for the moving-bank.
2. The true parameter set is outside the ini-
tial discretization chosen for the moving-bank.

b. The true parameter set is constant but not
equal to one of the discretized parameter sets. This
better represents a real world problem since the true
parameter set, with probability 1, will not be perfectly
matched to a filter in the full bank. Only the condition
where the true parameter set is within the initial condi-
tions chosen for the moving-bank is investigated, since
similar transient results would be obtained for part 2 of
a. ]

¢~ " The true parameter set is varying. Two effects
can be considered:

1. The true parameter set is varying and moves
continuously away from the parameter position upon which

the bank has previously locked. This could be the result

of a slow failure of some part of the system model or

10
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perhaps due to the depletion of fuel or redistribution of

weight within a space structure.

- TR KLY A AP

2. The true parameter set undergoes a jump
change to some other parameter set, perhaps due to an

abrupt failure in the system.

I.4.3. Controller Evaluation. The State and Param-

eter Estimation Study is used to determine the "best" param-

eter estimation method. This method is used as the basis

T AT S 4T T A s W LW SERTEW W W RN e wm—— W K B KR SR W,

é for a sliding bank multiple model adaptive controller.

E A Monte Carlo Analysis is performed on this controller, a

a multiple model adaptive controller, and a controller

ﬁ designed on a nominal value of the parameter vector but

i (g? using the moving-bank model as a state estimator. The con-
a troller algorithms will be more fully developed in Chap-

E ter II.

W Two benchmark controllers will provide standards

{ for controller evaluation: a single controller with arti-

ficial knowledge of the true parameter set and a robust,

single fixed-gain controller. The former will indicate the

best performance that could hope to be achieved using

A

adaptive control while the latter controller will provide

information on the performance that can be attained with a

e A S AR L —————— e . M . AT

non-adaptive controller.

i
N
:

.!,:% b
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@gg I.5. Overview

Chapter II develops the detailed algorithms for the
moving-bank MMAE and associated controllers and estimators.
Chapter III discusses the two-way truss model. Chapter IV
presents the ambiguity functions analysis and the simulation
used to evaluate the moQing-bank MMAE. Chapter V contains
analysis of the proposed algorithms and Chapter VI provides

conclusions and recommendations.

12
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II1. Algorithm Development

II.1l. Introduction

This chapter de&elops the algorithms for the full-
scale and moving-bank Bayesian Multiple Model Adaptive
Estimator. First, the full-scale mo&el is developed. This
is then modified for the moving bank case. The Ambiguity
Functions analysis is also developed.

Td.2e Bayesian Estimation
Algorithm Development

Development of the full-scale Bayesian Multiple
model Adaptive Estimation algorithms is presented in this
section. For a more rigorous development, the reader is
directed to reference (20:129-136).

Let the system under consideration be discrete and

described by (3; 6; 19):

X(ti,q) = 0(t; 1 8 )X(t) + Byl dulty) + Gylt;lw,(t,)

g(ti) = H(ti)g(ti) + g(ti) (II-1)
where "=" denotes a vector stochastic random process and:
§(ti): n-dimensional state vector,
¢(tl+l'ti): state transition matrix,
g(ti): r-dimensional known input vector,

Bd(t.): control input matrix,

13
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é%% Wq(t;): s-dimensional white Gaussian dynamics
N - noise vector,

Gd(ti): noise input matrix,
5(ti)= m~-dimensional measurement vector,
H(t,): measurement matrix,

v(t,): m-dimensional white Gaussian measurement
- noise vector, :

and the following statistics apply:

E{gd(ti)} = _Qr

rmTwtw BN BN . Y T aT T AR S B R Pt

T -
Blug(t;)wa (5} = Qqlt )6, .

Mot P e T o WL

B(y(t;)y (€] = Rt 8,

" 3’
&

b where 6ij is the Kronecker delta function. It is also

: assumed that E(to), w (ti), and x(ti) are independent for

L e £

all t..
i

Let a be the uncertain p-dimensional parameter

vector which is an element of A, where A is a subset of RP.

p e aim P A

This parameter vector may be uncertain but constant, slowly

1 varying, or it may undergo jump changes. The parameter

;
!

el 4 a7 A n T A AT AT A" At 6] ) bt 4T n A B ) e L AL YL M WO ML b TR AT AR MR O MR Y

vector a can affect any or all of the following within

Equation (II-1): ¢, Bd' Gd' Qd' H, and R. The Bayesian

estimator conceptually computes the following conditional

density function:

A
3
-

]
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(alz;) (I1-2)

g(t.) = [z (t ), z (t 1),...,2 (t )]

l
The second term on the right side of Equation }
(II-2) can be further evaluated: E

fglg(ti) (afz;) = fglg(ti) Bt (alz;,2;_;) ‘
£ ( |z, _;) ‘
a,z
& o T
z2(t) |2, ;) 211241

Conceptually, Equation (II-3) can be solved recur-
sively, starting from an a priori probability density func-

tion of fa(_a_), since £

-~

z(t,) |§_,g_(ti_l) (_z.ilé,,?_i_l) is Gaussian

with a mean of H(ti)_%(t;) and covariance [H(ti)P(t;)HT(ti)
+R(t;)], where _:’_E(t;) and P(t_i) are the conditional mean and

covariance respectively of g{_(ti) just prior to the measure

@Q at t.., assuming a particular realization a of a.
<! L
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Using the conditional mean, the estimate of E(ti)

becomes:

B{x(t,) |Z(t,) = 2,) =j Ky e, aie,) B2y 8

=.I' 5.[.1; fi(t ) Elﬁ(t )(x a|z )da]dx
= i o7 (II-4)

E{§(ti)|'z:(ti) %_ f [f x(t )lé 2 ( t.) QS'E'Ei)

£ (a]2,) dal dx

|

|Z(t;)

f j Fx(e) |azieg y (22,2 A ) BiEg)da

where the term in brackets is the estimate of é(ti) based on
a particular value of the parameter vector. This would be
the output of the Kalman filter based on a realization of
the parameter vector. ‘When a is continuous over A, this
would require an infinite number of filters in the bank.

To reduce the number of filters, the parameter space is
nsually discretized, yielding a finite number of filters.
The integrals over A in Equations (II-4) and (II~5) then

bec .me summations. Defining pk(ti) as the probability that
the kth.elemental filter is correct, conditioned on the mea-
surement history, it can be shown by a method analogous to

the development for Equation (II-3) that pk(ti) satisfies:

16
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i
Pplty) = % (II-6)
 fze)]a,z (e, ) Bil250 251 Py (85)
ja1 = LIRS
At+-E (t:.)|2(t,) =2 'Kn(t+) (t.) (II-7)
x(tg ) = E(xley) [2(t) = 23} = 2 % (5 ) Pylty

I
where a ¢ [a,,3,,...2,] and x (t,") is the mean of x(t,)
conditioned on a = a, and Z2(ty) = Z;,, i.e. the output of

th

the k= Kalman filter in the bank, based on the assumption

a-=a. Pictorially, the algorithm appears as in
Figure II-1.
The probability weighting factors for each Kalman

filter are calculated from Equation (II-6), where

f%(ti) 2,2t ;) (2; 18y r25y)
1 T -1
= exp [-(1/2)xr, (t.)A, ~(t,)r, (t.)]
(zﬂ)m/zlAk(ti”172 | S R i'=k" "1
(II-8)
and
— SR

m = number of measurements
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Both the residual covariance Ak(ti) and the residual
rk(ti) itself are readily available from the kth elemental
filter. The estimate of the parameter and the covariance of

the parameter are given by:

A A
d K
=] alzp.(t)éla- a)lda
f-.oo k=l k 1 k
K
Z anp,(t;) (I11-9)
k=1 Kok L
and

E{la - a(t;)]la - a(e)17z () = z;)

K A A
= Ilay - al)lis - a(t)1” - py(ty) (I1I-10)
k=

The covariance of the state estimate is given by:

P(e;") = E{lx(t) - x(e, D 10xt) - 26,1720 = 2.}

00

=f (x - 26,00 1x - x(e,))

- 00

T

£ ) (x]2;) ax

tIR

(t;) I%(ti
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the kt

= L Px(ty) (x - %t x-x, 17
k=1

" x(e)) fa,z ity Bl2E ) dx

pr N U S 1L R

C g e -z, (11-11)

where Pk(ti+) is the covariance of the state estimate of

h elemental filter.

II.2.1. Filter Convergence. The Bayesian Multiple

Model Adaptive Estimator has been shown to be optimal and
to converge if the true value of the parameter is nonvary-
ing (5). Convergence for this case occurs when the proba-
bility associated with one elemental filter is essentially
one and the probability associated with all other elemental
filters is essentially zero. The MMAE will converge to the
elemental filter with parameter value equal to, or most
closely representing, the true parameter set, as defined
in (5).

There are no theoretical results available for
varying parameters (3:18; 6:8). The fact that the filter
can converge to one filter for a non-varying true parameter
value, does give reason for some concern. For example, if

the true parameter value is varying very slowly, the

20
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algorithm may assume one filter is correct with probabil-
ity essentially equal to one. However, the true parameter
value may eventually become significantly different from
the value estimated by the filter (6:9), resulting in filter
divergence.

Another possibility is that the algorithm may con-
verge and lock onto the "wrong" filter. The filter is,
to some degree, always based on an erroneous model and may
converge to the wrong parameter point, especially when
operated for a long period when noises are assumed small
(20:23) . Dasgupta and Westphal investigated the case of
unknown biases in the measurement processes and showed that
the algorithm may converge to a parameter point that is not
close to the true value of the parameter space (3:17; 6:8).

One method of preventing divergence is to add
pseudonoise to the assumed model (20:25) in each elemental
filter; however, too much pseudonoisé addition tends to
"mask" the difference between the "correct" and "incorrect"
filters. The performance of the MMAE is dependent upon
significant differences between the residual characteris-
tics of the "correct" versus "incorrect" elemental filters.
If the residuals are consistently in the same magnitude,
Equations (II-6) and (II-8) show that the filter with the
smallest |Ak|, will experience an increase in its probabil-
ity weighting; however, |Ak|is independent of the residuals

h

as well as the "correctness" of the kt model (20:133).
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Hentz and Filios (3; 6) prevented the "lock on"
problem discussed previously by fixing the lower bound of
the probabilities associated with the implemented filters
(1; 20:27). If the computed value of any probability fell

below a threshold, it was reset to some minimum value deter-

CETTIE R ——r R Bl P P P ol ol QP St

mined by performance analysis.

II.3. Moving Bank Algorithm
Development (3:22-33)

The Multiple Model Adaptive Estimator presents a
computation burden that is too large for most practical

applications (3; 7; 18). Maybeck and Hentz demonstrated

that the full bank of filters could be replaced by a subset
of filters based on discrete parameter values "closest" to
the current estimate of the parameter vector. The proba-
bility associated with non-implemented filters is set to 0

while the probability weightings are distributed among the

| ®
)

implemented filters. As the parameter set estimate changes,

filters that are "closer" to the new parameter estimate are

T B oy P

implemented while those "furthest" away are removed.

Maybeck and Hentz also investigated changing the discretiza-
tion levels of the moving bank model. During the acquisi-
tion stage, the implemented filters are set to a coarse

discretization, then changed to finer discretizations as

N
|
N
;

the parameter estimate improves. Therefore, the implemented

filters would not necessarily occupy adjacent discrete

}

-

;
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points in the parameter space, as would be used in the full

bank MMAE.

II.3.1. Weighted Average (3; 6). The outputs of

each elemental filter of the moving bank estimator, are
weighted and summed in the same manner as Equations (II-6)
and (II-7); however, only the implemented filters in the
moving bank are summed. If J filters are implemented,
Equation (II-7) becomes:
J
z

IPTRE U E + .
x(e,1) = 1 x50t )py (k) (II-12)

j=1"

Similarly, Equation (II-6) describing the pk(ti)'s become:

£.(z(£,))p. (£,_;)
pylty) = d i 3 d-1 (II-13)

J

k=1

and Equation (II-8) similarly is:

1 T -1
£.(z(t,)) = expl - (1/2)r. (t)A (e, (£,)]
J 1 (2“)m72|A.(t.)|;i J 1 J 1 J 1
. (II-14)
and
= = T
Aj(ti) = Hj(ti)Pj(ti )Hj (ti)+ Rj(ti)

23

BT AT AT T P e s " T

- e

]
:

-

oA Y VT

-~

| & o Ja gn gt ng g s - o

AR T AT A

e

mmo;mmmmc{mm;mm-mwxm{v:mx/mmmmL«:Mam{m&mmmmmm&g



&Eg m is the dimension of z (number of measurements)

R. is the measurement noise strength in the jth

elemental filter.

II.3.2. §Sliding the Moving Bank (3:25). The deci-

sion logic for moving the "bank" is a critical area of
interest. The moving bank MMAE is a smaller version of the
full bank MMAE, with the moving bank centered around a i
parameter estimate. Typically, the moving bank is not ini- i
tially centered on the true parameter point or the true |
parameter point may change. This necessitates decision
logic for moving the "bank." Several algorithms have pre-
viously been investigated including Residual Monitoring, |
| Parameter Position Estimate Monitoring, Parameter Position 5
GE? and Velocity Estimate Monitoring, and Probability Monitor- ‘

ing (3; 7; 18).

I1.3.2.1. Residual Monitoring. Let a likelihood ‘

quotient for each elemental filter, Lj(ti), be defined as I

the quadratic form appearing in Equation (II-8):

-, T -1 -
Ly(ty) = £ () AT (e ), (¢)) (II-15)

" The decision is made to move the bank if at time ke

min[Ll(ti), LZ(ti)' ceoy LJ(ti)] S (II-16)

where T is a threshold level with a numerical value that

€g§ is determined during performance evaluations. The bank is
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ﬁﬁ§ moved in the direction of the filter with the smallest Lj’
2 as that filter would be expected to be nearest to the true

parameter set. If the true parameter vector value is out-

S 200 SN

side the moving bank, it would be expected that all the '
likelihood quotients exceed the threshold. This method

should respond quickly to a real need to move the bank but
also give erroneous results for a single instance of large

residuals possibly due to noise corruption.

b &

11.3.2.2. Probability Monitoring. This method is

similar to residual monitoring except that the conditional

hypothesis probabilities, generated by Equation (II-6),
are monitored. If the conditional hypothesis probability
é%% associated with an elemental filter is larger than a pre-
: viously determined threshold, the bank is centered on that
filter. Maybeck and Hentz found this decision logic, as
well as parameter position monitoring, to provide the best
performance. However, probability monitoring required
fewer computations than parameter position monitoring

(7:93-99) .

II.3.2.3. Parameter Position Estimate Monitoring.

This method centers the bank around the current estimate of

the true parameter set, which is given by:

g(ti) = I a.p.(t;) (II-17)

PR
Aok
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where J is the number of filters implemented in the moving

%

bank. Movement is initiated when the bank is not centered

L. .

on the point closest to the current true parameter set

estimate (3:26).

II.3.2.4. Parameter Position and Velocity Estimate

Monitoring. This method estimates the velocity of the

parameter position using thg history of parameter position
estimates. The velocity estimate is used to estimate the
position of the parameter set at the next sample time.

The bank is centered at this estimate of the future param-
eter point, thereby adding "lead" into the positioning of
the bank (22). Maybeck and Hentz found this decision logic

performed worse than parameter position estimate monitoring

or probability monitoring (6:85; 18:23), not providing much
desired lead but causing reduced stability in the bank

location.

IT1.3.3. Bank Contraction and Expansion. The

filters in the moving bank model do not necessarily need
to be at adjacent discretized parameter values; see
Figure II-2. This may decrease the accuracy of the initial
estimate but it will increase the probability that the
true parameter set lies within the bank.

Maybeck and Hentz found that parameter acquisition
performance can be improved by starting the moving bank

with a coarse discretization so that the entire parameter

26
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Fig. II-2. Bank Discretizations: a. coarse,
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@g@ value range lies within the bank and then contracting the

bank into a finer discretization when the parameter covari-

7

-
T

ance (Equation (II-10)) drops below some selected threshold

- > 3
o

"l
¥

(3:28; 6:26; 18:25).

he j
s »

Another method that may improve acquisition is to

monitor the probability associated with a "side" of t}e

bank; see Figure II-3. The probability associated with

each side would be calculated -as:

Iof(z(t)

_ side
Pgige (i) = I f.(z(t,)) GRS E)
4 sides 1
* * * * * * * x * *
Q-u" * @] * %* (@] * * (@] * *
ot
:: * * * * * * * * * *
| A ¥R O % * % %] %) % * pelemental
1 filter
'ﬁ.'. * 0 * * 0 * * o * *
1"",;1

»
»
*»
*»
*
»
»
%*
»
%

* o * * O * * 0 * *
N

"i" * * * * * * * * * *
e

? * * * * * * * * * %
fz\‘ AZ

o

o

> Fig. II-3. Probability Weighting of Sides
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é&; Several possibilities exist for threshold logic. If the

v probability associated with a side falls below a certain
threshold, it can be "moved in." Conversely, if the proba-
bility associated with a side rises above some threshold,
the remaining three sides are "moved in." A third possi-
bility is moving in all four sides if the summed proba-

bility of all the "side" filters are below some threshold.

| i el i | W AP | S SE AT Sl

o |
i

The bank may also need to Le expanded if the true

S, |

=
-

parameter value undergoes a jump change to a point outside

-

o

the range covered by the bank. The jump change could be
detected by residual or probability monitoring. For
residual monitoring, the likelihood ratios for all the
implemented filters are expected to be large and to exceed
| ‘23 some threshold. For probability monitoring, it is expected
that the conditional hypothesis probabilities be "close"
in magnitude. The subsequent bank contraction is accom-
plished in the same manner as discussed in the previous

paragraphs.

II.3.4. Initialization of New Elemental Filters

(3:29-31; 6:26-30). When the decision is made to move,
expand, or contract the bank, new filters must be brought
on line and "incorrect filters" discarded. New filters
require new values for ¢, Bd’ K (Kalman gain matrix), H,
gj(ti), and pj(ti). Except for the last two terms, these
are predetermined values associated with the particular

Q%Ez filter being implemented.
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The current moving bank estimate of 5(ti) is an
appropriate choice for §j(ti) for a new elemental filter.
The value for pj(ti) is dependent on the number of new
filters being implemented. 1If the bank "slides," as shown
in Figure II-4a, this involves either three or five new
filters. The probability weighting of the discarded
filters is redistributed among the new filters. This can
be done equally amongst the new filters or in a manner that
indicates the estimated "correctness" of the new filter.
Hentz suggested the following (7:29):

f (z(t NL-zp (t ))

unch
N fk(g(tl))

]Ch(t S
where ch = changed, unch = unchanged, and where fj(g(ti))
is defined in Equation (II-14) but with the residual

replaced by:

o e e
gj(ti) z; ngc_j(ti )

However, this requires additional computations and has
demonstrated no significant performance improvement over
dividing the probability weighting equally among the
changed filters (6:104). |

A bank expansion or contraction can result in the
resetting of all the filters in the bank as shown in

Figure 1I-4b. Dividing the probability weighting equally

30

!

" YO A O I S R AR Jn A T T 7o A T A AT SR AN AN PO BT I PNl e R PP P PO A A A PN T R o M SN M )



* * * * x * * * * * O New Set

Ay of Filters
* * * * * | 8 ] * * @ Discarded
....... : Filters
* * * * o o O a * *
a.

¥ * * * pAfter
Expansion

® Before
Expansion

*
o
*
a 8 =
e B =
| 8 a
*
a
*
*

b.

»
*
*
*
*
*»
*
*
*
*

*
(o]
*
4
a
*
*
0
*
*
RN P e A I LA R A M el

.
ST

.
«
-

|

Fig. II-4. Bank Changes: a. move, b. expansion

@j

31

T M TR i B o v ® o 2™ x T WD S 2w T T KT RS P N o I Y I o N R g "SRR TR Y iy NS ol W R o - ko i 2 RN BB ]
*
*
»*
*»
*
*
*
*
%
»

E
|
3
:
:

MR 7 L3 {0 vt AR AT O OU O O O O O ORI RO O OO R OO R O O OX O OO OO OO OO O e O S -C\T-’X,U(\t

=5



s

T T R A

A A A T s oy i 5 R A A R Y X K TR A A R

Y r e r L vl S S

%5

among the new filters is appropriate since the o0ld proba-

bility weightings may no longer be valid.

I1I.4. Controller and Estimator Design (3:18-22; 6:33-43)

Several controller and estimator designs are appro-
priate for implementation in the moving bank or full-bank
MMAE. All designs considered use the "assumed certainty
equivalence design" techniqué (21:241) , which consists of
developing an estimator cascaded with a deterministic full-
state feedback optimal controller. This method assumes
independence between controller and estimator design and is
the optimal stochastic controller design for a linear system
driven by white Gaussian noise with quadratic performance
criterion (21:17).

The moving bank MMAE is the estimator used in this
thesis. Each elemental estimator within the full bank is a
constant gain Kalman filter whose design is associated with
a particular point in the parameter space. Each design
assumes a time invariant system with stationary noise.
Propagation of the elemental filter estimate, gk(t), is

given by:

A - A +
Xt ) = opx (., ) + Byult, ) (II-19)

and the estimate is updéted by:

A + ~ - ~ -—
x (6.7 = x (£.7) + K lz(e) - HEX (2,71 (1I-20)
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where, the subscript "K" indicates association with a
particular point in the parameter space.

The design of each controller is similar. Each is
a linear, quadratic cost, (LQ) full-state feedback optimal
deterministic controller, based on an error state space
formulation (19:297). The controller is steady-state
constant-gain, with gains dependent upon the particular
value cf the parameter set used in the design. The LQ con-
troller is developed fully in Appendix A.

Three estimator/controller combinations are con-
sidered. First, the estimator provides only a state vector
estimate to a fixed-gain controller which is designed
around a nominal value of the uncertain parameter set.

The controller algorithm is of the form:

= i AT
u(t;) = -G la_ 1x(t,") (I1-21)

The second design method is for the estimator to
provide parameter and state vector estimates to a controller

with gains that are dependent on the parameter estimate:

ne | ol - 2 + :
alt;) = -G la(t;7)1x(t,") (II-22)

where the parameter estimate generated at the previous
sample time is used in order to reduce computational delay.
A third approach is to form an elemental controller

for each of the elemental filters of the sliding bank. The
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control outputs are probabilistically weighted, similar to

Equation (II-12), to form:

J
u(t;) = jilpj (t;)uy(t;) (I1-23)
where,
gj(ti) = -Gc[gjlgj(ti ) (I1-24)

This is usually referred to as a multiple model édaptive
controller (MMAC) (21:253).

Two benchmark controllers are also investigated: a
single controller with artificial knowledge of the true
parameter set and a robust, single fixed-gain controller.
The former represents the "best" that can be achieved
through adaptive control. The robust controller will repre-
sent the "best" control that can be achieved using non-

adaptive control.

II.S5. Ambiguity Function Analysis (3; 6; 20:97-99)

Ambiguity function analysis can provide information
about the performance of an estimator. The generalized

ambiguity function is given by:

where a is the parameter vector, a, is the true parameter

3
vector, and L[g,gi] is a likelihood function upon which a
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parameter estimate would be based via maximum likelihood

techniques. For a given value of a,_, the curvature of the

t
function of a, at the value of ar provides information on
the ability of the filter to estimate that parameter: the
sharper the curvature, the greater the precision. This

curvature is inversely related to the Cramér-Rao lower

bound on the estimate error covariance matrix by

E{la - a,lla - g£]T} > [-(32/332) Ai(é'ét)lg;gt]-l

The ambiguity function value A,(a,a,) for any a
and a, can be calculated from the output of a conventional
nonadaptive Kalman filter sensitivity analysis (20:97-99)
in which the "truth model" is identical to the model upon
which the Kalman filter is based, except that éhey are
based on a

N and a, respectively. The ambiguity function

is then given by

5
A (a,a,) = £ [m/2 ln(27m) - 1/2 1n(|Aa(t ;al]
5 j=i-N+1 J

n/2 1n(2m) - 1/2 ln[|P(ti+;§|]

-1, + + _
1/2 tr[P “(t, ;a)P(t, ;a,.,2a)] (I1-25)

€
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el where,
Y T 1
A(ti;é) = [H(ti)P(ti ;a)H (ti) + R(ti)]
for the Kalman filter based on a,
+ :
and Pe(ti‘;gt,g) is the covariance matrix of the error
between the state estimate of the Kalman filter
based on a and the states of the true system based
on a_, where "-" or "+" denotes before or after
incof‘poration of the i measurement.
"m" is the number of measurements.
"n" is the number of states.
The terms are summed over the most recent N sample times
(20:98) ; however, here N is set equal to one. This reduces
the size of the fluctuations in the value of A (g,gt).
Consequently, this flattens the surface of the plot of the
ﬁ ambiguity function plotted as a function of the parameter a.
The main benefit of setting N = 1 is that this significantly
reduces the number of computations. ::}
Filios encountered numerical difficulties while 'fi
evaluating the ambiguity function (3:64). The covariance @
o
matrix at time ti+ was ill conditioned. Therefore, it was g”
L,
impossible to compute the ambiguity function as described I
in Equation (II-25). The numerical difficulties were over- \)Z
\,S
come by approximating the expressions for the probability o
i\
weighting factors (Equation II-14)) and the ambiguity i§
function (Equation II-25)). Equation (II-14) is approxi- t-‘?{
i
mated as X
r:’
2 £.(z(t;)) = exp[-(1/2)r. (£)A]T(£)r(t,)]
g4 j=""1i =] 1] i'=""1
. »
b
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This is no longer a true density function because the
scale factor is incorrect; however, because of the denomi-
nator in Equation (II-13), the probability weightings are
still correct in the sense that they add to one (3:65).

If the determinants of the A matrices of the elemental
filters are expected to be approximately equal in magni-
tude, in the absence of numerical problems, the relative
magnitudes of the value of the ambiguity functions will
not be significantly altered (3:65). Equation (II-25) was
approximated by removing the terms containing the deter-

minants of P(ti+) and A. Equation (II-25) becomes

) m/2 1ln(2w) - n/2 1In(2m)

A;(aa

i t

1/2 tr{A"(t;;a) [H(t,)P_(t, ;a2 H (t,)+R(¢,) ]}

- 12 we{pTH e e (2 e ,2) ) (II-26)

This is a reasonable approximation since the determinants
of P(ti+) and A will have a minimal effect on the ambiguity
function, since its primary sensitivity is in the functions
that are being preserved (3:66). It was not known whether
numerical difficulties will be encountered with the model
being used in this thesis effort. However, since the
approximation would not significantly alter the outcome of
the ambiguity function analysis, the decision was made to
incorporate it to take advantage of the smaller computa-

tional load.
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II.6. Summary

This chapter developed algorithms necessary for
implementation of the full-scale and moving bank multiple
model adaptive estimator and appropriate adaptive controller
based on this type of estimation. The moving bank MMAE is
expected to yield significant computation savings over the
full-scale MMAE. The ambiguity functions analysis was
also developed. Ambiguity functions are expected to give
insight into the parameters that need adaptive estimation
and into the appropriate levels of discretization of the

parameter space to perform such estimation.
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III. Rotating Two-bay Truss Model

III.1. Introduction

This chapter develops the system equations for the
rotating two-bay truss model of a flexible space structure.
The structure consists of a truss that rotates around a
fixed point, thereby incorporating both rigid body rotation
and bending mode dynamics. The differential equations
describing the equations of motions are developed and then
transformed into modal coordinates. The actual physical
structure of the two-bay truss is discussed, as is the
finite element analysis used to obtain the mass and stiff-
ness matrices which describe the rotating two-bay truss.
The need for order reduction and the order reduction tech-
nique employed in this thesis is also developed.

III.2. Second Order and State
Space Form Models

The general second-order differential equations
which describe the forced vibration of a large space struc-
ture with active controls and n frequency modes can be

written as (16; 30):

ME(t) = CZ(t) + Kr(t) = E)(u,8) +E,(¢) (I11-1)

2
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where,
M - constant nxn mass matrix
C - constant nxn damping matrix
K - constant nxn stiffness matrix

r(t) - vector representing structure's physical

coordinates
F,(u,t) - control input
gz(t) - disturbances and unmodeled control inputs

The control system is assumed to consist of a set
of discrete actuators. The external disturbances and
unmodeled control inputs are represented by white noise,

thus producing:

-~

ME(t) + CE(t) + Kr(t) = -bu(t) - gw (III-2)

where "_" denotes a vector stochastic random process and:
u(t) - vector of length m representing actuator
input,

b - nxm matrix identifying position and relation-
ship between actuators and controlled vari-
ables (16),

vector of length r representing dynamic
driving noise, where r is the number of noise
inputs,

g
]

g - nxr matrix identifying position and rela-
tionships between dynamic driving noise and
controlled variables.

The state representation of Equation (III-2) can be

written as:

X = AX + Bu + Gw (I1I-3)

L ¢ T T A 4 LT U T LA & A AL AT L A O T W AT I I T 2 TR o T BT ¢ AN LD



e o AT e o R

T A e AT . B B o B Py ™ ™ " - ™ ™

L)
J
1
|
t
i
]
i
l
|
[
!

G

o

where,

HE
il
R e

HED
1]

(III-4)

e 2R
NGE

2nxl 2nxl

and the open-loop plant matrix A, the control matrix B,

and the noise matrix G are given by:

0 I 0
A= B =
-M lK -M lC -M lb
2nx2n 2nxm
0
G = St (III-5)
_M g
2nxm

It is assumed that the noise can be represented as inputs
that enter the system at the same place as the actuators

(b matrix = g matrix). Measurements are assumed available
from position and velocity sensors which are co-located for
simplicity. Accelerometer measurements are not used
because this would increase the number of states in the
model and it is not clear that this additional complexity
would aid in evaluating the moving-bank MMAE. It is assumed
that the measurements are noise corrupted due either to
deficiencies in the model of the sensor or some actual
external measurement noise. The measurements are modeled

as:
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iﬂ.:» H 0

X +yv (II1-6)
H'| ~ ~

PXx2n

where p is the number of measurements, v is an uncertain
measurement disturbance of dimension p and modeled as a
white noise (19:114), H is the position measurement matrix,
and H' is the velocity measurement matrix. The velocity and
position measurement matrices are identical because of

co-location of the velocity and position sensors; therefore,

S SRS Cateepwpugng -/ RS e Sl Sl
N
L]
o

both measurement matrices will be referred to as the H

matrix.

I11.3. Modal Analysis

Modal analysis is used to transform the system into

a set of independent equations by transforming the system

d
\
\

from physical coordinates to modal coordinates. 1In order

¥

to achieve decoupling, the damping matrix must be assumed
to be a linear combination of the mass and stiffness

matrices (16):
C = aK + BM (I11-7)

The modal coordinates are related to the physical

coordinates by

Y PR R AT R B AN AR A SR A N X "

r=T2¢Q (I11-8)
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where r is as defined previously and  represents the modal
coordinates. T is an nxn matrix of eigenvectors and is the

solution to (l&; 25; 30; 31):

2

w MT = KT (II1-9)

The values of w which solve Equation (III-9) are natural
or modal frequencies (8:66). Substituting Equation (III-8)

into Equation (III-3) gives

x' =A'x' + B'u + G'w (IT1-10)
where X' is now defined as:
2 2
x' =7 ' = | 7 (III-11)
E o - 2
~ <4 2nx1 ~ Jd2nx1

and the open loop plant matrix A', the control matrix B',

and the noise matrix G' are:

0 I
A' =
-T lM lKT -7 lM lCT
— -1 2nx2n
0 o
B' = e G' = 1 (ITI-12)
- L-T vy
43
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The A!' matrix is also of the form (30; 31):

. 0] I

8 A' = 2 (III-13)
¢) [-wi] [-2Ciwi]

2nx2n

where each of the four partitions are nxn dimensional and

W
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diagonal. The measurements become:

HT o

dn
1]
(3
+
i<

The formulation of the system in modal coordinates

allows some assumptions concerning structural damping (16). j

It is assumed that uniform damping exists throughout the

dg? structure. The level of structural damping is determined

by selecting a value for the damping coefficients (;i) and

substituting this value into Equation (IIX-13). The par-
ticular value of the damping coefficient has no effect on
the calculation of W since it is the natural or modal fre-
quency. The assumption simplifies the determination of

structural damping and allows a better physical insight

into formulating the problem than does the selection of
values for a and B as shown in Equation (III-7). The damp-
ing coefficient of ¢ = 0.005 is chosen for implementation
because it is characteristic of damping associated with

large space structures (16; 22). '
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III.4. Two-bay Truss

I1I.4.1. Introduction. This section describes

the physical structure of the tw .1y truss rotating about
a fixed point. The physical dimensions of the model,
analysis used to develop the two-bay truss model, sensors
and actuators, and the physical parameter variations of

the model are discussed.

III.4.2. Background. A fixed two-bay truss was

originally developed to study the effects of structural
optimization on optimal control design (30); see Figure
III-1. A similar model was used to research active con-
trol laws for vibration damping (16). The model was modi-
fied to lower the structural frequencies, thereby making
the problem more like a large space structure (16). This
was done by adding non-structural masses at nodes 1l-4.
The model was further modified for this research by adding
rigid body motion; see Figure III-2. The rotating two-bay
truss approximates a space structure that has a hub with
appendages extending from the structure. The mass of the
hub is large relative to the mass of the appendage. The
hub is then rotated to point the appendage in a commanded
direction.

The rigid body motion is established by adding a
point (node 7) that remains fixed while the two-bay truss

is free to rotate about this point in the x-y plane; see
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Q&? Figure I1I-2. The truss is connected to this point using
rods having radii that are large relative to the rods used
to construct the two~bay truss. Making the rods large
makes a very "stiff" link between the truss and node 7.
This introduces high frequency modes into the structure but
keeps the lower modal frequencies similar to the case where

the truss is fixed.

I1I.4.3. Two-bay Truss Construction. The struc-

ture consists of 13 rods which are assumed to be constructed
of aluminum, having a modulus of elasticity of 10.7 psi and
weight denz.ty of .1.1b/in3 (30). The cross-sectional areas

of each member shown in Figure III-2 are given in Table III-1.

TABLE III-1

STRUCTURAL MEMBER'S CROSS-SECTIONAL AREAS

Member Area (inz) Member Area(inz)

a .00321 h .00328
b .00100 i .00439
c .00321 j .00439
d .01049 k .20000
e .00100 1 .20000
£ .01049 m .20000
g .00328 - -

The cross-sectional areas of rods a-j were calculated by
optimizing the weight of the structure shown in Figure III-l.
First, a non-optimal structure was constructed with all rods

having identical cross-sectional areas. A second structure

I A M DA o kP kb DIPTSR N A A I Fo R e e e R e B e e O w
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was then calculated with its weight minimized with respect
to the constraint that the fundamental frequency remain
unchanged. Rods k-m are used to make the "stiff" link
between node 7 and the two-bay truss. The area was arbi-
trarily selected to be large relative to the area of other
rods in order to achieve this stiffness.

Non-structural masses with a mass of 1.294 lb-secz/
in, are located at positions 1, 2, 3 and 4 as shown in
Figure III-2. The non-structural mass is very large com-
pared to the structural mass but this is necessary to
achieve the low frequencies associated with large space
structures (16). The actual value of the non-structural
mass was selected using an optimization technique (31)
which found the mass necessary to attain a frequency of 0.5
Hz in the lowest mode for the fixed two-bay truss (16).

The mass and stiffness matrices, describing the
system model, were obtained using finite element analysis
(31). Finite element analysis models a structure as con-
sisting of a finite number of nodes connected by elements.
The program has the capability to use a number of different
elements, but this research uses rods which are described
by cross-sectional area, modulus of elasticity, and weight
density. The finite element program produces mass and
stiffness matrices with dimension equal to the number of
degrees of freedom (DOF) associated with the model. Each

row of the mass and stiffness matrix is associated with a
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3§f specific node and DOF. For the two-bay truss shown in

b Figure III-2, row 1 of each mass and stiffness matrix is
associated with the x-axis DOF of node 1. Each node has
three translational DOF. Only planar motion is being con-
sidered; therefore, the nodes are modeled with only two DOF.
For this problem, node 7 was fixed. Therefore, all three

DOF associated with this node are eliminated, thereby

reducing the dimensionality of the mass and stiffness
matrices to 12 states and thus eventually yielding a 24-
state model. The mass and stiffness matrices for the spe-
cifications previously discussed, are listed in Appendix B.

These are the nominal matrices from which parameter varia-

b
v
b
o

tions are considered.

ok
<

I1I.4.4. Sensors and Actuators. Velocity and

>~
A

e e e e L

v _A

position sensors are assumed co-located at nodes 1 and 2

-
—

as shown in Figure III-2. Two additional sensors for
angular displacement and velocity are co-located on the hub
(node 7) of the two-bay truss. Actuators are placed at
nodes 1 and 2 as shown in Figure III-2. An additional
actuator is located on the hub.

The states corresponding to velocity and positioh
are directly available in physical variable formulation
(Equations III-3, III-4, III-5) while the states corres-
ponding to angular displacement and velocity are directly

available in modal formulation (Equations III-10, III-11,

Nvd
LR
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dﬁ% III-12, III-14). The H and b matrices are constructed by
calculating separate matrices in the different state space
formulations. These matrices are augmented after the
physical variable formulations have been transformed into

modal coordinates.

I1II.4.5. Physical System Parameter Uncertainty.

The purpose of this thesis is to test the moving-bank
multiple model adaptive estimation and control algorithms.
Therefore, the model must have parameter uncertainty which
allows adaptive estimation to be applied. A 10 by 10 point
parameter space is created by considering two physically
motivated parameter variations. First it is assumed that
if? the four non-structural masses vary =50 percent to +40 per-
cent from the nominal value in discrete steps of 10 percent.
The variation is assymmetric simply to allow the 10 poiﬁt
parameter variation. This weight variation can be physi-
cally related to fuel being expended from or added to a
tank or weight being shifted to a different section (other
than the two-bay truss) of the space structure. Secondly,
the entire stiffness matrix is allowed to vary =20 percent
to +16 percent from the nominal value in discrete steps
of 4 percent. This can be associated with structural
fatigue in the rods or a failure of a member within the

structure itself. The realism of the magnitude of these

parameter variations has not been rigorously investigated;

&2
R %f
:
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however, the variation is necessary to produce the changes
in the system model of a magnitude as to require adaptive
estimation and control. Both the mass and stiffness vari-
ation is uniform as there is no strong evidence that
introducing a nonlinear variation scale will improve moving-

bank MMAE performance.

III.5. State Reduction

III.5.1. Introduction. The mass and stiffness

matrices were previously shown to be of dimension 12. This
produces a system model that has 24 states, which is much
larger than desired for this thesis effort and for a prac-
tical control application. This section develops a method
of order reduction referred to as singular perturbations
(9; 10; 16; 21:219). The method of singular perturbations
assumes that faster modes reach stéady state essentially
instantaneously. This section develops the method of
singular perturbations and then discusses the magnitude of

the order reduction.

III.5.2. Development. The deterministic system is

reformulated as follows:

A A B
= |11 12 + | (III-15)
Ry Ay 30
z=[H HIx (III-16)
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The x

2

1 states are to be retained and All and A22 are

square matrices. If only high frequency modes are elimi-

(e B O e s e s RN

nated, steady state is assumed to be reached instantaneously

in these modes (*2 = 0). The x, states are then expressed

2

in terms of the x, states:

+ A + B,u (III-17)

i, =0 =A 22%¥, + Bou

£ 2121

-
Xy = A (A%, + Bzg) (III-18)

Substituting for X, gives

x A X, +Bu zZ=Hx, +Du (ITI-19)
=i r=1 r— - =

@‘ where:

S S AR AN e B S e e e & A e b mm SRS
I
T

1

; A= (A;; - ALA0A) (ITI-19a)
)
-1
g B, = (B; - A;,A5B.) (III-19b)
: H = (H, - H a~la ) (III-19c)
r 1 22221

‘ D = (-H.AT1B.) (III~19d)
g r 272272

Note that the Dr matrix did not exist before order reduc-
tion. It is a direct-feed term which was not in the
unreduced system (16).

This order reduction technique is now applied to a

system of the form of Equation (III-10). Reordering
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Equation (III-13) into the reduced-order form produces
Equation (III-20), where the upper partition contains the

modes to be retained while the lower partition contains

those assumed to reach steady state instantaneously.

.................... (III-20)

>
]
1
§
!
1
1
|
|
1
1
l
|
1
{
1
1
!
i
I
|
1
_--——-—f—-————

2
[-w,] [-27.,w,]
— 2 272 -l 2nx2n

Comparing Equation (III-20) to Equation (III-15) shows

that the partitions A,, and A,, are zero. Substituting

RGN R L W S S 7
O

12 21
Gg: this result into Equation (III-19) yields:
N
:.
») = -
.ﬁ Ar All (III-21a)
™ Br = B, (III-21Db) |
E; |
E H_ = H (III-21c) |
x 4
D_ = (-H.AZlB.) (III-21d) :
E 2 222

Dr is the only term in Equation (III-19) that is dependent

:

|
a

5
1

upon terms asscciated with the states assumed to reach

o~

steady state instantaneously. The other reduced-order

matrices are calculated simply by truncating those states

3

associated with x,.
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Calculation of Dr can be greatly simplified by

examining the form of Equation (III-21d). H, is similar in

2
form to Equation (III-6):
H2 0]
H, = (I11-22)
0] Hé

Hz represents measurement of the unmodeled position states
while Hé represents measurement of the unmodeled velocity
states. In Equation (III-6), it was assumed that the
position and velocity measurement matrices were identical
because of co-located positionrand velocity sensors. The
same assumption can be made in Equation (III-22); however,
the distinction between the wvelocity and measurement.
matrices will be retained since it is shown in Equation
(III-26) to be important im the general development of the
reduced order matrices. As was gshown in Equation (II1I-20),

A22 is a square matrix of the form:

0] I
A, = 3 (ITI-23)
22 2
(-w,) [-2z ,w,]
where each of the four partitions is a square, diagonal
matrix whose dimension is dependent upon the number of

states to be retained. 1Its inverse is (8):
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A22 = (I1I-24)
I o)

B, is similar in form to the matrix B described in Equation

(III-5):

B, = (III-25)
where b' represents the rows of the matrix product -M_lb
corresponding to the unmodeled states. Evaluat:ion of

Equation (III-21d) yields:

2,;-1
Hz[-wzl b'

J
[

(ITI-26)

0}
px1l

where p is the number of measurements. Only the position
measurements are affected since the lower portion is zero.
The Dr matrix is only dependent upon the position portion
of the measurement matrix and not the velocity measurement
matrix. The inverse of LoD is easily calculated since the

matrix is diagonal. An example of detailed system matrix

development and order reduction is listed in Appendix B.

II1.5.3. Order Reduction Selection. The number of

modes retained was determined by examination of the eigen-

values and frequencies of the unreduced system (Table III-2).

The frequencies can be distinctly divided into several
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j}% TABLE III-2
- ':p 9l
by

EIGENVALUES AND FREQUENCIES

;J Mode No. Eigenvalues¥* Frequencies
Y
' 1 0.0000 0.0000
2 8.8922 1.4152
) 3 22.5492 3.5888
A 4 29.5444 4.7021
5 31.1519 4.9580
6 32.8002 5.2203
/ 54.3893 8.6563
8 58.1592 9.2563
b 9 985.9204 156.9141
T~ 10 9018.8987 1435.4023
Q 11 11515.9941 1832.8274
, 12 19956.5072 3176.1768

* The eigenvalues are for an undamped system
(L = 0).

Gg? groups of closely spaced frequencies. For example, modes
4, 5, and 6 are clearly one set of closely spaced frequen-
cies. When reducing the order of system by the method of
singular perturbations, it is desirable not to make the

reduction at a point which will divide a group of "closely

T el - A R

spaced" frequencies (22). At the same time, a sufficient
number of frequencies must be retained in order to do an
adequate job of estimation and control. An obvious selec-
tion of a reduced order model is to retain the first three
modes, resulting in a six-state system. Keeping any more
modes will result in the requirement to retain the frequency
group at modes at 4, 5, and 6, which would result in a much

larger l2-state system.
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II11.5. Summary

This chapter developed the system equations for the
two-bay truss with rigid body motion. The mathematical
model is dependent upon physical parameters which, in
reality, vary from those used in the mathematic&al model.
The moving-bank MMAE will be used to estimatc both the
reduced order system states and the varying parameters of

the physical system.

a
b}

S
=
<
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IV. Simulation (3; 6)

Iv.l. Introduction

Evaluation of the performance of the moving-bank
multiple model adaptive estimator/controller for this
application requires simulating actual space structure move-
ment and estimator/controller operation. The coamputer simu-
lation provides a Monte Carlo and sensitivity analysis
(using ambiguity functions) of the estimator/controller.
This chapter provides background on the Monte Carlo simula-
tion, briefly outlines the computer software, aad then dis-
cusses the simulation plan for analyzing the performance of

the estimator design logics and the moving-bank algorithms.

IV.2. Monte Carlo Analysis

It is desired to obtain statistical information on
the estimator/controller's performance. One method of
generating these statistics is through the use of a Monte
Carlo study. This involves obtaining many samples of the
error process through simulation and then using this data
to approximate the process statistics (19:329).

The true system model under consideration can be

described by a linear time-invariant difference equation:

2lEgq) = (b5 85)8(85) + Baltylulty) + Galty)wylty)

(IV-1)
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(See Equation II-1l) for a complete definition of terms.)

Bd and Gd

matrices given in Equation (III-5). It is assumed that the

are the discrete-time equivalents of the B and G

noise input matrix is identical to the control input matrix,
therefore (19:171),

t.

1
Bd = Gd =jt ¢(ti,T)B dart (IV-2)
i-1

Noise corrupted measurements are provided to the estimator

in the form of:

N

where H is the measurement matrix and g(ti) is a discrete
time, zero-mean, white Gaussian measurement noise with
covariance matrix R. Matrices 9, Bd’ Gd' and H are func-

tions of the true parameter vector a,:

T

where, M and K are the mass and stiffness parameters,
respectively and are discussed in Section III.4.

The simulation is accomplished for a sufficient
number of runs so that the computed sample means and vari-
ances of the random variables of interest are good approxi-
mations to true ensemble averages. The number of simula-

tion runs selected is 10 and this is determined by
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where, T is

The

computed as

S A X SRR I LR T T T RS
o
»
=
‘-'-
L=
I

v ' " - ‘ - .
R R CR RGP G R G R TR TRt R

vy
>
t

of the sample statistics as the number of Monte

is increased (3:52).

Figure IV-1l illustrates the simulation for obtain-

ing individual samples of the Monte Carlo analysis (3:53).

es not previously defined are:

ti) = "truth model" states
i) = estimate of system states
i) = estimate of uncertain parameter vector

t,) = error in the parameter estimate

%a(ti) =a,.(t,) - %(t.)

ti) error in the system state estimate

%x(ti) T—’;‘-t(ti) - §(t.)

1

angx nt matrix to make the dimensions com-

patible since the estimate is typically of lesser dimen-

sion than the "truth model"” states.

sample mean of the variables of interest is

(3:53; 6:46; 19:129):

N
E[gx(ti)] =~ ﬂex(ti) = (1/N) kilfSXk(ti) (IV-4)
where,
N = total number of simulation runs

= value of e (t,) during the kth simulation run
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The sample covariance ofg%éti) is computed as (3:54;

6:47; 19:130):

T A
Bllg, (t;) - Elg, (t;)]lg, (&) = Elg, (5,017} ~ B (£)) =
[1/(N-1)] : (t.)er (t.) - [N/(N-1)] B ()R> (t.)
kﬁl Sxk ' ilSxk ' Ci ex i ex 7}
(IV-5)

When evaluating the estimator alone, the feedback
controller in Figure 1IV-1 is replaced by a dither signal
with a frequency and amplitude that is determined by trial
and error. It has been shown that a dither signal can be
used to excite the system model and enhance parameter iden-
tification (6:50,58-59; 20:135,136; 21:229).

The error in the state estimate and the err-r in
the parameter estimate are useful in evaluating thg perform-
ance of the estimator. The error in the state estimate
gives the best means of comparing the estimator to other
types of estimators while the error in the parameter esti-
mate lends insight into the accuracy of a parameter esti-
mate that may be fed to an adaptive controller and provides
a means of evaluating various move, contract, and expand
algorithms (3:54).

When evaluating the estimator/controller combina-
tion it is more appropriate to examine the statistics of

the true state values. In this thesis effort, the control
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objective is to quell any oscillations in the two-bay
truss structure and to "point" the two-bay truss in a com-
manded direction. It is important to examine the magni-
tude of the control inputs in order to detect unreasonable
commanded control levels. Lynch (16) in his research

with a fixed two-bay truss (see (Section III.4.2) limited
the magnitude of the force of an individual actuator to
100 1lbs. Although this limit is not implemented in this
thesis, it is used as a general guideline as to a reason-

able range of actuator activity.

Iv.3. Software Description (3:55-59)

IV.3.1. Introduction. The analysis of the moving-

bank estimator/controller required the development of four
computer programs. Each of these programs is a modifica-
tion of programs developed by Hentz and Filios (3; 6).

Fcr a more detailed description of the following programs,
the reader is referred to Filios (3). The first program
is a preprocessor which creates a parameter space that

is utilized in the Monte Carlo simulation and ambiguity
functions analysis (see Section I1I.5). The second program
simulates the moving-bank multiple model adaptive estimator
and performs Monte Carol simulation runs and generates
data for each run. This program is also modified to pro-
duce Monte Carlo runs of individual elemental filters.

The third program is a postprocessor that computes the
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means and variances of variables of interest and then
generates the plots of statistics for the Monte Carlo
simulatior.. The fourth program computes the ambiguity

functions and generates their plots.

IV.3.2. Preprocessor. The preprocessor computes

the discretized, reduced order, system matrices (¢, Bd’

G,, H, Dr in Equations (II-1) and (III-19)) for each param-

d
eter point within the parameter space, Kalman filter and
LQ controller gains, and information needed for the
ambiguity functions analysis (see Section II.5). An input
file allows the state and control weighting matrices,
dynamic driving noise, measurement noise, as well as the
time increment for the discrete system to be varied. This
input file also contains the mass and stiffness matrices
and two vectors which specify the mass and stiffness vari-
ation. The mass and stiffness matrices are used to deter-

mine a 24-state system (see Equation III-4) which is then

reduced to the number of states specified (see Section

I1I1.5).

Gt Ml

IV.3.3. Primary Processor. The primary processor

o o 7S

performs the Monte Carlo simulations. The program con-

AR 5

sists of an executive subroutine which calls several sub-

Wa 8
¥

A
-

routines. For each sample period, the true system and the

.
L ¢

filters currently implemented in the moving bank are

| sy

ﬁﬁ? propagated forward ffom the most recent sample time. A
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noise-corrupted measurement is then made of the true sys-
cm and the filters of the moving bank are updated. The
program then calculates the necessary control inputs and
makes decisions uu whether to move, expand, or contract
the bank. After each sample period is complete, the values
of the variables of interest are written to a data file.
The inputs to the primary processor describe the
parameter space (obtained from the preprocessor) and true
system parameters, and specify the move/contract/expand
algorithms to be implemented, the associated thresholds,
initial probability weightings for the filters in the
moving bank, and initial filter states. The output of the
primary processor is a data file for each variable of
interest (state estimate, actual state values, control
inputs) covering all of the simulation runs, and a more
detailed print file covering just the first Monte Carlo run.
The print file lists the exact filters implemented in the
moving bank and the variables which affect the decision

algorithms.

IV.3.4. Postprocessor. The postprocessor takes

the variable data files obtained from the primary processor
and calculates the sample means and variances from to to

t Plots are then generated of the time histories of the

f.
means of each variable t lo, where o is the standard
deviation. The postprocessor is run for each data file

generated by the primary processcr.
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IVv.3.5. Ambiguity Functions Analysis. The

ambiguity functions analysis involves two programs. The
first evaluates the ambiguity function for each point in
the parameter space (see Chapter II for a full discussion
of ambiguity functions) and writes this information (a
10x10 matrix) to a file. A dither signal is used to
enhance the difference between filter models. The input
file to this program specifies the truth model, number of
Monte Carlo runs, as well as the time length of the simu-
lation. The system matrices are obtained from the same
file generated by the preprocessor for the primary pro-
cessor. The second program reads the information from a
file and then generates a three-dimensional plot of the
ambiguity function values versus location in the parameter

space (see Figure V-1).

iv.4. Simulation Plan

IV.4.1. Introduction. The simulation plan

involves three phases. First, the ambiguity functions
analysis is performed to establish the suitability of the
model for adaptive estimation and to lend insight into the
appropriate degree of parameter variation of the two-bay
truss. The second phase evaluates the performance of only
the adaptive estimator. The purpose is to determine which
decision logic provides the "best" estimation performance.

The final phase incorporates several possible controller
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structures in order to evaluate the different adaptive
estimation/control algorithms.

The "truth model" for all simulations is of the
same dimension as the internal filter model (see Section
III.5.3). The system is driven by zero-mean white noise
and a dither signal that is determined by trial and error.
The strength of this white noise as well as the measurement
noise is determined by trial and error with the criteria
that the noise add a reasonable amount of uncertainty to
the system during a sample period (see Appendix B for more

discussion of the selection of noise strengths).

IV.4.2. Ambiguity Functions Analysis. The

ambiguity functions analysis is generated for non-adaptive
estimators based on a representative sample of parameter
sets, to determine what parameters can and should be esti-
mated. Relatively low sensitivity of filter performance

to a parameter change makes identification of the parameter
difficult and removes need for adaptivity, since all
filters within the parameter range can accurately estimate
the states (3:70).

Once the model is determined to be appropriate for
adaptive estimation, the embiguity function analysis also
lends valuable insight into the proper level of discretiza-
tion of the parameter space (3:91). Highly sensitive

ambiguity functions establish the need for a tightly
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discretized parameter range, whereas ambiguity functions
that are less highly peaked in certain parameter direc-
tions show that fewer parameter points are needed to span

that particular parameter range.

IV.4.3. Parameter and State Estimation Study.

The estimator is first evaluatgd using only movement of a
bank at the finest level of discretization (see Figure
II-2). The decision logics for moving (see Chapter II)
are individually implemented in a series of simulation runs
and then compared. For these simulations the parameters
are forced to (see Section I.4.2):

a. be constant and equal to a discretized point

in the parameter space; or

b. be constant but between and not equal to a

»

”~,

discretized point in the parameter space; or
c. vary, either continuously or by undergoing a
jump value.

The evaluation of these decision logics is based upon the

i BRI

accuracy of the state estimate and the speed with which the
decision logic acquires the true point in the parameter

space. Although parameter estimation is the primary

impetus for implementation of a moving-bank MMAE, state

Al B2 T

[ B B &

estimation and ultimately controller performance, are the

o

L

standards by which the moving-bank are judged.
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The bank expansion and contraction algorithms are
evaluated by using a jump change in the uncertain parameters
being estimated. The change places the uncertain parameters
outside the current range of the moving bank. The purpose
of the expansion algorichm is to allow the bank to respond
more quickly to a jump change in the uncertain parameter
than would be possible by using the bank movement alone
(3:62) . Therefore, the expansion algorithms are evaluated
by comparing the results to a simulation using a jump changé

in parameters but not allowing bank expansion.

IV.4.4. Controller Study and Design. The Staie

and Parameter Estimation Study is used to determine the
"best" bank motion aecision logic method. This method is
used as the basis for a controller using the moving bank
multiple model adaptive estimator. A Monte Carlo analysis
is performed on this controller, a multiple model adaptive
controller, and controller designed on a nominal value of
the parameter vector but using the moving bank model as a
state estimator (see Section III.4). Two benchmark con-
trollers are also investigated through Monte Carlo analysis:
a single controller with artificial knowledge of the true
parameter set and a robust, single fixed-gain controller

(see Section II.4).
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% {%&. IV.5. Summary

The simulations for the moving bank estimator/
controller evaluation have Leen described in this chapter.

The Monte Carlo simulation frr performance assessment, the

associated software, and the simulation plan have been dis-
cussed. The results of these simulations are discussed

in the following chapter.
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V. Results

V.l. Introduction

The results of the ambiguity functions analysis
and the Monte Carlo simulations are presented. The goal
of the ambiguity functions analysis is to determine the
suitability of the two-bay truss for application of the
moving-bank multiple model adaptive estimator. This analy-
sis produces no conclusive results, but similar information
is in fact obtained from Monte Carlo analysis of individual
filters within the parameter space. The Monte Carlo analy-
sis indicates a significant change in estimator performance
over the range of the parameter variation, and thus pro-
vides insight into the usefulness of adaptation for this
application. The purpose of the Monte Carlo analysis of
the moving-bank MMAE is to evaluate the move, expand, and
contract algorithms developed in Chapter III and to investi-
gate the effectiveness of the moving-bank MMAE as a con-
troller. Results indicate that the moving bank provides
an increase in performance over a single filter not given
knowledge of the true parameter vector; however, the
increase in performance is due more to the performance of
the Bayesian multiple model estimation algorithm rather
than that of any moving-bank decision logics. It is found

that a fixed bank does an excellent job of estimation and

T2
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control and performs nearly as well as a filter given
artificial knowledge of the true parameter variation.

Please note that this chapter continually refers

to parameter points (i.e., parameter point (5,5)). The

Y]

a
E

i
A
%

first number corresponds to variation in the non-
structural mass of the rotating two-bay truss while the
second number corresponds to variation in the stiffness

matrix. See Section III.4.5 for &« complete discussion.

V.2. Ambiguity Functions Analysis

-

The ambiguity functions analysis experiences no

apparent numerical problems but does not produce clear

Rk
AL

results. The analysis is done using both covariance and

A PP

x N

3
»
1

Al Monte Carlo analyses to obtain the necessary error covari-

TATRERLA S AT 7 A

ance matrices (see Chapter 1I). When Monte Carlo analysis
is used, the results indicate a need for adaptive estima-
tion since the ambiguity function values experience rela-
tively large variations (see Figure V-1l). This indicates

i
l
I
|
a need for adaptive estimation; however, it was found f
through repeated ambiguity function evaluation for indi- i

[

vidual choices of parameter values in the "truth" and

"filter" models, that the computation of the ambiguity
functions did not converge despite a very large number
of Monte Carlo runs. Table V-1 contains the ambiguity

function evaluation for five ambiguity function runs for

B R O U S

the case of the implemented filter being identical to the

ks truth model. The number of Monte Carlo runs is set at 10

_—~~
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TABLE V-1

DIFFERENT AMBIGUITY FUNCTION EVALUATIONS
FOR THE SAME CONDITIONS

0.55126
2.23278
1.68001
1.85798
1.51977

and each of the Monte Carlo runs ran for 10 seconds at a
time interval of 0.05 seconds. Figure V-1 plots the
ambiguity functions for the true parameter point (indicated
by arrow in Figure V-1) being located at (5,5) in the
parameter space. The magnitude of the variation of the
ambiguity functions in Table V-1 as campared to the magni-
tude scale in Figure V-1 indicates inconclusive computa-
tion of the ambiguity functions. Better results could not
be obtained by increasing the number of Monte Carlo runs.
More repeatable results are obtained using covari-
ance analysis, but is is suspected that numerical diffi-
culties do occur. Despite a very large number of propaga-
tion cycles, the error variances did not converge and in
fact diverged. Through Monte Carlo analysis of the indi-
vidual filters, it is shown that the filters are stable
(see Section V.3). Results can be obtained by arbitrarily
limiting the number of sample periods to 50. The ambiguity

functions are plotted for several points in the parameter
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In Equation (II-25), N was set equal to one. This greatly

e " u

reduced the number and complexity of computer operations.

¢

g i

‘ 0 «

“ d$§§ space and indicated erroneously that all filters in the E

i space would do equally well in obtaining state estimates. i

E One possible reason for the inconclusive ambiguity

; function analysis is the set of approximations made in the

i development of the ambiguity functions (see Section II.5). ;

lh \
)
i
|
¥

The result is a reduction in the fluctuation in the ambigu-
ity function, but this may have produced a numerically
inaccurate algorithm when implemented on a finite word-

length computer.

V. 3. Monte Carlo Analysis of
Individual Filters

T R M A eSS St v, s

o

(ﬁ% Monte Carlo analysis of individual filters provides
the information that is desired from ambiguity functions.
It shows a significant performance difference between
filters based upon different points in the parameter space.
Simulations are conducted for various filters in the

parameter space, against a truth model based on some arbi-

5 R e—————— R R 8 We o W

trary point in the parameter space. A dither signal with
a magnitude of 5 and frequency of 30 rad/sec is used to
excite the system. The magnitude and frequency are deter-
mined by trial and error with the criteria that the dither
signal cause significant differences in the state estima-
tion performance between elemental filters. Appendix C

6ER contains state error statistics plots for the case of the
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ﬁg? truth model being based on the parameter point 5,5 (nominal
values of non-structural mass and stiffness matrix). Simu-

lation runs are made for filters corresponding to each

"n e 2
ik Vs

adjacent point in the parameter space at the finest level
of discretization (see Figure II-2b). These plots show a
significant degradation in estimation performance when the
filter model differed from the truth model. The plots also
indicate that the mass variation cause more degradation in
performance than did the variation in the stiffness
matrices.

The plots also show that different combinations of
mass and stiffness variation have varying effects on

estimation performance. Figure C-6 is for a filter based

on the point (6,6) in the parameter space, which is a 10
percent increase in the non-structural mass and a 4 percent
increase in the stiffness matrix (see Section II1I.4.5).
An increase in the non-structural mass lowers the modal
frequencies of the filter model, while an increase in the
stiffness matrix pushes the filter freguencies higher.
One would expect a cancelling effect and estimation per-
formance that is better than parameter points (5,6) and
(6,5), yet worse than for the truth model (parameter point
(5,5)). Figures C-1, C-2, C-5, and C-6 support this result.
The parameter points (6,4) (increase in non-
structural mass and decrease in stiffness matrix) and

'&?a (4,6) (decrease in non-structural mass and increase in
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Qﬁa stiffness matrix) demonstrate the additive effect of the

parameter variation. The former decreases the structural

A . | P ey aag swe S PVl

frequencies while the latter causes higher structural fre-

quencies. In both cases, one would expect an additive E
degradation in performance. For example, filter (6,4) E
should perform worse than filters (6,5) and (5,4). Figures Q
C-4, C-5, and C-9 support this result. '
V.4. Moving-Bank MMAE %

I3

V.4.1. Introduction. The performance of the

moving bank with probability monitoring is discucsed with
respect to parameter and state estimation. The bank fails
to identify a truth model parameter vector although it was

6&% able to provide good state estimation. Expansicn and
3 contraction of the bank is not considered because of time
limitations and the fact that the investigation of moving-

bank algorithms did not lead to a logical basis for con-

P Baail @ S BP S GG & 8 | IO RIS e

tracting or expanding the bank.

».
s

e

V.4.2., Parameter Estimation. Investigation of

x

bank movement using probability monitoring is very incon-

clusive. This is due to the continual movement of the

e e SF g S0 12

bank because of the varying of Bayesian weightings on the

-

elemental filters. Table V-2 contains the filter weight-
ings and the location (the center filter of the moving-

bank) for the first second of a performance evaluation of

N XX T Y 7]

ol a moving-bank initialized at its finest discretization
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ﬁ.‘;% (see Figure II-2b) and initially centered at parameter
point (5,5). The weightings vary between several filters
with no clear-cut tendency towards any one filter. The
truth model is based upon the internal model of the filter
implanented at parameter point (5,5). The bank is using

probability monitoring with a bank move threshold of 0.25.

The bank move threshold is arbitrarily selected since

examination of the probability weightings (see Table V-2)

!
:1::.: do not indicate a better choice. Hentz (6:62) showed that :
‘ performance increases as the probability threshold decreases ;
and that the best estimation performance is achieved with '
» thresholds near zero. With thresholds this low, the bank
E:' ] moves anytime the largest filter does not have the largest j
@ probability weightings. The magnitude of the dither signal l
i:-.; is 100 with a frequency of 30 rad/s. The reasoning for the
$ increase in the magnitude of the dither signal over that of
the Monte Carlo analysis of individual filters is presented
% in Sections V.4 and V.5.
iﬁ An attempt is made to determine trends in the move-
-“? ment in the bank. This is accomplished by keeping a record
':: of the parameter point about which the moving-bank is
::g centered. The elements of a 10x10 matrix are initialized
o to zero and then one is added at each sample time to the
%" matrix element corresponding to the current location of the
«. moving bank. Entries are recorded froni t=1.0 to 5.0.
5 % Recording is not started at t = 0.0 in an attempt to avoid
X At
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transient effects. Figures V-2 and V-3 show the results
where the true parameter points are (1,10) and (10,1),
respectively. 1In each of the figures, one point in the
10x10 matrix corresponds to a 3x3 grid on the depicted
surface. The arrow pbints to the parameter location of

the truth model. The dither signal applied has a magni-
tude of 100 and frequency of 30 rad/s. The only informa-
tion the figures yield is qualitative in nature. Different
truth models do affect the movement of the bank. 1In

Figure V-2, it can be seen that the bank tends to center
itself in the general area of the true parameter point.

In Figure V-3, the true parameter point is changed and this
certainty seems to "pull" the bank in the general direction
of the new point, though not to the extent of causing the
bank to center on the actual point (10,1).

The continual changing of filter weightings may be
due to "relatively" similar performance between filters.
The weighting of each filter is dependent upon the accuracy
of the filter prediction of the current measurement, as
shown in Equation (II-6). In the absence of noise, the
truth model would predict the next measurement perfectly.
With noise dynamically affecting the system, the correct
filter will have an incorrect estimate. Tf the magnitude
of the noise is great enough, a filter based upon an
incorrect but similar model could produce an estimate

that is as good or possibly even better. How often an
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Fig. V-2. Bank Location Time History; Trus Parameter
at Mass = 1, Stiffness = 10
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"incorrect" filter suggests an equally or more accurate
estimate is dependent upon the magnitude of the dynamics
driving noigre aand measurement noise as compared to the
differences between correct and incorrect filters, and
upon the statis+tics of the dynamics driving noise and the

measurement noise,

V.4.3. State Estimation. Simulations are run for

the case of a truth model being equivalent to the model
implemented in one of the elemental filters in the parameter
space. First, the case is investigated for feedback con-
trol being a dither signal with magnitude of 5 and frequency
cf 30 rad/sec. This dither signal is used because results

of the Monte Carlo analysis of individual filters (see

Section V.3) clearly indicate that the rotating two-bay

truss requires adaptive estimation when subject to a dither

Ny
,
hI

s

signal of this magnitude and frequency. Results indicate
that, although the individual filters vary significantly

in performance when matched against a truth model based
upon a different point in the parameter space for the con-
ditions, that the Bayesian estimation algorithm produces

a very robust state estimation algorithm. This supports
the use of a bank, but not necessarily a moving bank.
Appendix D contains two sample state estimation plots which
illustrate sample state estimation performance using proba-

bility monitoring. The benchmark of performance, a single
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filter given artificial knowledge of the true parameter

is contained in Appendix C (Figure C-1).

v.5. Fixed-Bank MMAE

During the course of the moving-bank simulations,
the bank was often "fixed" in order to investigate the
trends that occurred in the weightings and to assist in
evaluating the movinngank MMAE. It is found that, even
if the bank does not move, a subset of the filters within
the bank provided increased performance and robustness over
a single filter. At a dither signal with a magnitude of
5 and frequency of 30 rad/sec, the fixed-bank algorithm did
a good job estimating at all points in the parameter space
as compared to a single filter given artificial knowledge
of the true parameter vector. It was previously shown that
significant performance degradation occurred for the case
of individual filters at a dither signal with a magnitude
of 5 and frequency of 30 rad/sec.

The magnitude of the dither signal is increased to
100. The performance of the estimator is still nearly
identical to the case of a single filter given artificial
knowledge of the parameter. In these initial investigations,
the bank is set at its closest discretization and centered
at the parameter point (5,5). Figqure E-1 is the simulation
for a Monte Carlo run against a truth model based on the
parameter point (5,5). Figqures E-2 through E-5 (in Appen-

dix E) are the simulation plots for Monte Carlo runs
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against several truth models which are based on parameter
values outside the discretization of the bank. The plots
indicate good state estimation performance at all points.
A small decrease in performance is indicated at parameter
point (3,7). This point corresponds to an additive
degradation in filter performance from both parameter
variations (see Section V.3); therefore, one would expect
to see the most performance degradation from this point.
The fixed-bank MMAE is also investigated at various
discretizations. The state estimation performance are com-
pared at discretization levels of 1 (finest discretiza-
ticn), 2 and 4 (coarsest discretization) and at a dither
signal of 100 using the parameter point (3,7) as a truth
model. Results indicate that the bank at a discretization
level of 2 and 4 outperformed the bank at a discretization
level of 1; see Figures E-4, E~-6, and E-7. This is par-
ticularly evident in the error plot corresponding to the
velocity of the second bending mode (EX(6)). This indi-
cates that the bank does a better job of encompassing the

true parameter value as the discretization becomes coarser.

V.6. Moving-Bank and Fixed-Bank Comparison

The moving-bank and fixed-bank estimator are com-
pared against identical truth models. First, the magnitude
of the dither signal is set equal to 100 at a frequency of

30 rad/sec. The truth model is selected at parameter point
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(3,7) in order to make use of previous figures. Simula-
tions were conducted for the moving-bank and the fixed-
bank at various discretizations. The moving-bank is imple-
mented using probability monitoring with a move threshold
= 0.25. The bank move threshold is arbitrarily selected
since examination of the probability weightings (see
Table V-2) do not indicate a better choice. ‘Figures F-1,
E-4, E-6, and E-7 illustrate the results. The plot corres-
ponding to the velocity of the second bending mode (EX(6))
most clearly illustrates differences in performance. Per-
formance is similar for all cases except for the case of a
fixed bank with discretization of 1, which indicated a
small degradation in performance. In addition, the moving-
bank estimator result (Figure F-1l) has a "spike" in the
estimate of the rigid body position state at approximately
t = 4 seconds which probably corresponds to a move in the
wrong direction.

Additional Monte Carlo runs are conducted against
a truth model based on the parameter point (1,10) and with
a dither signal magnitude of 500 and frequency of 30 rad/
sec (see Figures G-2, G-3, G-4, and G-5). The parameter
point (1,10) and the large dither signal are chosen because
it is desired to enhance the identifiability of the system.
A significant degradation in performance occurs at all
discretizations; however, it shows a clear performance

increase in estimation performance with coarser parameter
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discretization. The moving bank performance is similar to

the simulation with discretization level of 4 (Figures F-2
and F-5, respectively). The moving-bank shows slightly
better performance in estimating the velocity of the second
bending mode (EX6)) while the discretized fix-bank does a
better job of estimating the angular velocity (EX(4)). The

reason for this pattern of performance is not obvious.

v.7. Controller Performance

Controller performance (see Section II.4 and Appen-
dix A) is investigated for the case of only the fixed bank,
although few results are obtained because of time con-
staints. A controller using the moving bank is not investi-
gated also because of time constraints. The system is
excited with a dither signal of magnitude 500 and frequency
of 30 rad/sec for 1 second. This is done to produce a
large oscillation in the structure on which the effects of
active control would be obvious. Figqure H-1 shows the
result of the dither signal with no control applied. For
subsequent plots, at time = 1 second, a steady-state feed-
back controller is used to quell the structural oscilla-
tions induced by the dither signal and to force the angular
position (state 1), to zero. Nominal control gains (see
Section II.4 and Appendix A) corresponding to parameter
point (5,5) were used. Figure H-2 shows the states and

control for the case of truth model being at parameter
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point (5,5). The control clearly damps out structural
oscillations and also "points" the rotating two-bay truss
by bringing the rigid body position state (X(1)) to near
zero. The scale of the plots corresponding to the rigid
body state is in radians. ObViously, the control of this
state needs to be improved. For all control simulations,
the control of the rigid body states (X(l) and X(4) are
nearly identical. This is expected since the modeling
of the rigid body states is not changed by the parameter
variation investigated in this thesis (see Appendix B,
A matrix).

Figures H-2 and H-3 are for truth models at param-
eter points (3,7) and (7,3) respectively. States 3 and 6
(corresponding to the highest frequency bending mode posi-
tion and velocity) are clearly controlled better when the
truth model is at parameter point (7,3). Hentz found that
when the true natural frequency (of a simple two state
system) is greater than the natural frequency upon which
the controller is designed, the moving-bank estimator/
fixed-gain controller drove the system unstable (6:105).
As compared to parameter point (5,5), the parameter point
(7,3) corresponds to an increase in the non-structural
mass and decrease in the stiffness matrix (both decrease
the natural frequencies) while the parameter point (3,7)
corresponds to a decrease in non-structural mass and

increase in the stiffness matrix (both increase the natural
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frequencies); therefore, it is expected that a steady-state
controller designed upon the parameter point (5,5) would
do a better job of controlling a truth model based on
parameter point (7,3).

Slightly better transient results are obtained for
the rigid body motion state (X(1l)) when the truth model is
at parameter point (7,3) although the control of the rigid
body states is nearly identical for all controller simula-
tions (Figures H-2, H-3, H-4). This is expected since the
modeling of the rigid body states is identical for all

points in the parameter space (see Appendix B, A matrix).

v.8. Summary

The results of the moving-bank Multiple Model Adap-
tive Estimator as applied to the two-bay truss model of a
space structure have been presented. The analysis of
moving-bank logics is very inconclusive; however, the use
of probability monitoring improves performance over the
case of fixed bank of filters corresponding to the finest
discretization level in the parameter space. The Multiple
Model Adaptive Estimation algorithms provide a substantial
increase in pérformance over the case of a single non-
adaptive Kalman filter. As such, the use of a subset of
filters of the full bank as well as a full bank is sup-

ported, particularly with coarse discretization to allow

the true parameter value to be encompassed within the bank
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@gi while not requiring an excessive number of elemental filters

-

within the algorithm. Limited investigation into feedback

-

control of the structure shows the ability to quell struc-
tural oscillations, but very poor performance in "pointing"

the structure.
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VI. Conclusions and Recommendations

VI.1l. Introduction

The investigation of the moving-bank Multiple Model
Adaptive Estimator took an unexpected course in that its
results do little to support or arque for a particular
decision logic for controlling bank motion. Instead, the
results mainly focus on the issue of whether a fixed bank
is more appropriate than a moving bank. The results do
provide support for implementation of the Multiple Model
Adaptive Estimator in either form. The thesis does provide

valuable insight into the issue of parameter discretiza-

“tion and generates a model of a space structure on which

more research into Multiple Model Adaptive Estimation can

be based.

VI.2. Conclusions

The rotating two-bay truss model of a space struc-
ture clearly requires adaptive estimation when subjected
to the parameter variation investigated in this thesis.
Although no conclusions could be drawn from the ambiguity
functions analysis, the Monte Carlo analyses of individual
filters versus various truth models with dither signal
clearly showed that adaptive estimation is appropriate.

The results indicate that a fixed bank with the

truth model parameter value within the area of the bank
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performs as well as a mobing bank in Monte Carlo simula-
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